Carbon Based Magnetism

Download Read Online Carbon Based Magnetism book
Author: Tatiana Makarova
Publisher: Elsevier
ISBN: 9780080460376
Size: 26.42 MB
Format: PDF, ePub, Mobi
View: 7427

Carbon Based Magnetism by Tatiana Makarova

Original Title: Carbon Based Magnetism

Carbon Based Magnetism is the most complete, detailed, and accurate guide on the magnetism of carbon, the main element of living creatures. Written by the leading experts in the field, the book provides a comprehensive review of relevant experimental data and theoretical concepts related to the magnetism of metal-free carbon systems. These systems include carbon based compounds, namely organic radical magnetic systems, and magnetic materials based on carbon structures. The aim is to advance the understanding of the fundamental properties of carbon. This volume discusses all major modern hypotheses on the physical nature of magnetic ordering in carbon systems. The first chapters deal with magnetic ordering mechanisms in p-electron systems as well as molecular magnets with spins residing only in p-orbitals. The following chapters explore the magnetic properties of pure carbon, with particular emphasis on nanosized carbon systems with closed boundary (fullerenes and nanotubes) and with open boundary (structures with edge-localized magnetic states). The remaining chapters focus on newer topics: experimental observation and theoretical models for magnetic ordering above room temperature in pure carbon. The book also includes twenty three review articles that summarize the most significant recent and ongoing exciting scientific developments and provide the explanation. It also highlights some problems that have yet to be solved and points out new avenues for research. This book will appeal to physicists, chemists and biologists. The most complete, detailed, and accurate Guide in the magnetism of carbon Dynamically written by the leading experts Deals with recent scientific highlights Gathers together chemists and physicists, theoreticians and experimentalists Unified treatment rather than a series of individually authored papers Description of genuine organic molecular ferromagnets Unique description of new carbon materials with Curie temperatures well above ambient.

Characteristics Of Graphitic Films For Carbon Based Magnetism And Electronics

Download Read Online Characteristics Of Graphitic Films For Carbon Based Magnetism And Electronics book
Author: Jeongmin Hong
Size: 41.17 MB
Format: PDF, ePub, Docs
View: 6514

Characteristics Of Graphitic Films For Carbon Based Magnetism And Electronics by Jeongmin Hong

Original Title: Characteristics Of Graphitic Films For Carbon Based Magnetism And Electronics

This dissertation concentrates on the characteristics of graphene, a single layer of graphite, defined as two-dimensional material for carbon based magnetism and electronics. Carbon materials, which are demonstrated by diamond and graphite, have always been of great interest for their unique properties. Moreover, in the last two decades, there have been three revolutionary milestones in the development of carbon materials, which were related to the discovery of fullerenes, carbon nanotubes, and graphene, respectively. Such research evolution led to the realization of the feasibility to tailor magnetic and electronic properties of graphitic sheets. Magnetism of carbon materials is of particular interest because of its new and relatively unexplored origins. The technological potential of the new materials is enormous as they promise to become the first room-temperature ferromagnetic semiconductors--the Holy Grail of the world of electronics. Not to mention that the existence of the new materials is vital for the emerging field of spintronics. Researchers believe that new carbon-based magnetic materials could greatly extend the limits of current technologies relying on magnetic and semiconducting properties. In this work, the magnetic properties of pristine graphene and chemically modified graphene were mainly investigated. The chemical functionalization with nitrophenyl (NP) groups was performed by covalent attachment of aryl groups to the basal plane of carbon atoms. The functionalized samples were found to be in a mix of ferromagnetic and antiferromagnetic states with spins aligned in the main plane at room temperature. Based on these findings, this work attempted to identify the origins of the intrinsic magnetism and potential ways to tailor magnetism in graphene. Such technology has great potential to pave a way to the next-generation technologies containing high-speed and high-density nonvolatile memory as well as the production of reconfigurable logic devices, integrated magneto-optical devices, quantum information devices, and many others.

Carbon Based Superconductors

Download Read Online Carbon Based Superconductors book
Author: Junji Haruyama
Publisher: CRC Press
ISBN: 9814303313
Size: 74.37 MB
Format: PDF, ePub
View: 2817

Carbon Based Superconductors by Junji Haruyama

Original Title: Carbon Based Superconductors

Superconductors (SCs) are attractive materials in all respects for any community. They provide a deep insight into the physical properties of the condensed matters and also have useful applications as ultra-low-power-dissipation systems that can help resolve the present energy problems. In particular, the recent advancement of carbon-based new superconductors (CNSCs) is significant. Before 2004, the superconducting transition temperature (Tc) of carbon-based SCs was below 1 K, except in fullerene clusters. However, in 2004, a Russian group discovered that diamond highly doped with boron could be an SC at Tc = 4 K. The following year, a group from Cambridge found that calcium-intercalated graphite could be an SC with Tc = 11.5 K. In 2006 and 2008, the editor’s group from Japan also discovered that carbon nanotubes could be SCs at Tc = 12 K. Since then, research on CNSCs has increased notably. A small mass of carbon can produce high phonon frequency and high Debye temperature. Combining these with other specified properties of CNSCs (such as one-dimensional electronic states) is highly expected to open doors to high-Tc superconductivity like those of CuO2- and Fe-based SCs, which were the only SCs to show Tc > 40 K in the past. CNSCs, such as diamond, graphite, carbon nanotubes, fullerenes, and others, are a very attractive field of research, and this book is the first to describe their basic physics and the recent advances toward high Tc in this field.


Download Read Online Magnetism book
Author: Joel S. Miller
Publisher: John Wiley & Sons
ISBN: 9783527304295
Size: 68.32 MB
Format: PDF, ePub, Mobi
View: 3099

Magnetism by Joel S. Miller

Original Title: Magnetism

Reflecting contemporary knowledge, this open series of volumes provides a much-needed comprehensive overview of this growing interdisciplinary field. Topical reviews written by foremost scientists explain the trends and latest advances in a clear and detailed way. By maintaining the balance between theory and experiment, the book provides a guide for both advanced students and specialists to this research area. It will help evaluate their own experimental observations and serve as a basis for the design.

Frontiers In Magnetic Materials

Download Read Online Frontiers In Magnetic Materials book
Author: Anant V. Narlikar
Publisher: Springer Science & Business Media
ISBN: 9783540272847
Size: 64.21 MB
Format: PDF, ePub
View: 3295

Frontiers In Magnetic Materials by Anant V. Narlikar

Original Title: Frontiers In Magnetic Materials

Frontiers in Magnetic Materials focuses on the current achievements and state-of-the-art advancements in magnetic materials. Several lines of development- High-Tc Superconductivity, Nanotechnology and refined experimental techniques among them – raised knowledge and interest in magnetic materials remarkably. The book comprises 24 chapters on the most relevant topics written by renowned international experts in the field. It is of central interest to researchers and specialists in Physics and Materials Science, both in academic and industrial research, as well as advanced students.

Magnetism Nanosized Magnetic Materials

Download Read Online Magnetism Nanosized Magnetic Materials book
Author: Joel S. Miller
Publisher: Wiley-VCH Verlag GmbH
ISBN: 9783527303021
Size: 51.34 MB
Format: PDF, Kindle
View: 6485

Magnetism Nanosized Magnetic Materials by Joel S. Miller

Original Title: Magnetism Nanosized Magnetic Materials

Magnetic behaviour, once thought to be mature, has gained a new momentum as it is being expanded by contributions from molecular chemistry, materials sciences to solid state physics. The spectrum spans molecule-based - organic, inorganic, and hybrid - compounds, metallic materials as well as their oxides forming, for example, thin films, nanoparticles, nanowires. New phenomena are explored that open promising perspectives for commercially applied "smart" materials. As a depository of contemporary knowledge on key topics related to magnetism, this open series of volumes provides a much-needed comprehensive overview of this growing interdisciplinary field. The topical reviews are written by the foremost scientists in the area, and the trends and recent advances are explained in a clear and detailed manner with a focus on the correlations between electronic structure and magnetic properties. The balance between theory and experiment within this series will guide advanced students and specialists in evaluating experimental observations and will serve as a basis for the design of new magnetic materials. This is a unique reference work, indispensable for everyone concerned with the phenomena of magnetism!

Handbook Of Magnetism And Advanced Magnetic Materials

Download Read Online Handbook Of Magnetism And Advanced Magnetic Materials book
Author: Helmut Kronmüller
Publisher: Wiley-Interscience
ISBN: 9780470022177
Size: 25.89 MB
Format: PDF, Docs
View: 7755

Handbook Of Magnetism And Advanced Magnetic Materials by Helmut Kronmüller

Original Title: Handbook Of Magnetism And Advanced Magnetic Materials

From the first application of the oxide magnetite as a compass in China in ancient times, and from the early middle ages in Europe, magnetic materials have become an indispensable part of our daily life. Magnetic materials are used ubiquitously in the modern world, in fields as diverse as, for example, electrical energy transport, high-power electro-motors and generators, telecommunication systems, navigation equipment, aviation and space operations, micromechanical automation, medicine, magnetocaloric refrigeration, computer science, high density recording, non-destructive testing of materials, and in many household applications. Research in many of these areas continues apace. The progress made in recent years in computational sciences and advanced material preparation techniques has dramatically improved our knowledge of fundamental properties and increased our ability to produce materials with highly-tailored magnetic properties, even down to the nanoscale dimension. Containing approximately 120 chapters written and edited by acknowledged world leaders in the field, The Handbook of Magnetism and Advanced Magnetic Materials provides a state-of-the-art, comprehensive overview of our current understanding of the fundamental properties of magnetically ordered materials, and their use in a wide range of sophisticated applications. The Handbook is published in five themed volumes, as follows: Volume 1- Fundamentals and Theory Volume 2- Micromagnetism Volume 3- Novel Techniques for Characterizing and Preparing Samples Volume 4- Novel Materials Volume 5- Spintronics and Magnetoelectronics


Download Read Online Fullerenes book
Author: Elena Sheka
Publisher: CRC Press
ISBN: 9781439806432
Size: 26.14 MB
Format: PDF, ePub, Mobi
View: 890

Fullerenes by Elena Sheka

Original Title: Fullerenes

At the interface between chemistry, biology, and physics, fullerenes were one of the first objects to be dissected, scanned, and studied by the modern multi-specialty biotech community and are currently thriving in both research and practical application. Other members of the sp2 nanocarbon family, such as nanotubes and graphene, are currently being studied with the vigor equal to or greater than of the early days of buckminsterfullerene. Fullerenes: Nanochemistry, Nanomagnetism, Nanomedicine, Nanophotonics utilizes a computational platform to embrace two distinguishing fullerene features: odd electrons and exclusive donor-acceptor abilities. The author showcases fullerene nanoscience from a computational viewpoint, intertwining theory and experiment to elucidate key concepts in fullerene science and future avenues of exploration. The author uses fullerene membership in sp2 nanocarbon nanoscience to demonstrate the intimate similarity in the behavior of fullerene, carbon nanotubes, and grapheme. The majority of available books on fullerenes and nanocarbons are collected works and reviews of authors with varying views and interests. While playing a vital role in the developments of nanoscience, these collections do not present a coherent analysis of the status of the field. This book, on the other hand, presents a unified introduction to the multidisciplinary world of fullerene nanoscience based on a single paradigm of concepts, terminology, and ideas. The conceptual approach is accessible, deeply grounded by quantum theory, and easily adapted to both modern computers and the classroom.

Nanoscale Magnetic Materials And Applications

Download Read Online Nanoscale Magnetic Materials And Applications book
Author: J. Ping Liu
Publisher: Springer Science & Business Media
ISBN: 9780387856001
Size: 80.91 MB
Format: PDF, ePub
View: 4678

Nanoscale Magnetic Materials And Applications by J. Ping Liu

Original Title: Nanoscale Magnetic Materials And Applications

Nanoscale Magnetic Materials and Applications covers exciting new developments in the field of advanced magnetic materials. Readers will find valuable reviews of the current experimental and theoretical work on novel magnetic structures, nanocomposite magnets, spintronic materials, domain structure and domain-wall motion, in addition to nanoparticles and patterned magnetic recording media. Cutting-edge applications in the field are described by leading experts from academic and industrial communities. These include new devices based on domain wall motion, magnetic sensors derived from both giant and tunneling magnetoresistance, thin film devices in micro-electromechanical systems, and nanoparticle applications in biomedicine. In addition to providing an introduction to the advances in magnetic materials and applications at the nanoscale, this volume also presents emerging materials and phenomena, such as magnetocaloric and ferromagnetic shape memory materials, which motivate future development in this exciting field. Nanoscale Magnetic Materials and Applications also features a foreword written by Peter Grünberg, recipient of the 2007 Nobel Prize in Physics.

Recent Books :